
Rethinking Node-wise Propagation for Large-scale Graph
Learning

Xunkai Li

cs.xunkai.li@gmail.com

Beijing Institute of Technology

Beijing, China

Jingyuan Ma

mjy20020227@163.com

Beijing Institute of Technology

Beijing, China

Zhengyu Wu

Jeremywzy96@outlook.com

Beijing Institute of Technology

Beijing, China

Daohan Su

bigkdstone@foxmail.com

Beijing Institute of Technology

Beijing, China

Wentao Zhang

wentao.zhang@pku.edu.cn

Peking University

National Engineering Laboratory for

Big Data Analytics and Applications

Beijing, China

Rong-Hua Li

Guoren Wang

lironghuabit@126.com

wanggrbit@gmail.com

Beijing Institute of Technology

Beijing, China

ABSTRACT
Scalable graph neural networks (GNNs) have emerged as a promis-

ing technique, which exhibits superior predictive performance and

high running efficiency across numerous large-scale graph-based

web applications. However, (i) Most scalable GNNs tend to treat all

nodes with the same propagation rules, neglecting their topologi-

cal uniqueness; (ii) Existing node-wise propagation optimization

strategies are insufficient on web-scale graphs with intricate topol-

ogy, where a full portrayal of nodes’ local properties is required.

Intuitively, different nodes in web-scale graphs possess distinct

topological roles, and therefore propagating them indiscriminately

or neglect local contexts may compromise the quality of node rep-

resentations. To address the above issues, we propose Adaptive
Topology-aware Propagation (ATP), which reduces potential high-

bias propagation and extracts structural patterns of each node in

a scalable manner to improve running efficiency and predictive

performance. Remarkably, ATP is crafted to be a plug-and-play

node-wise propagation optimization strategy, allowing for offline

execution independent of the graph learning process in a new per-

spective. Therefore, this approach can be seamlessly integrated into

most scalable GNNs while remain orthogonal to existing node-wise

propagation optimization strategies. Extensive experiments on 12

datasets have demonstrated the effectiveness of ATP.

CCS CONCEPTS
• Computing methodologies → Semi-supervised learning
settings; Neural networks.

KEYWORDS
Graph Neural Networks; Scalability; Semi-Supervised Learning

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WWW ’24, May 13–17, 2024, Singapore, Singapore.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0171-9/24/05. . . $15.00

https://doi.org/10.1145/XXXXXX.XXXXXX

ACM Reference Format:
Xunkai Li, Jingyuan Ma, Zhengyu Wu, Daohan Su, Wentao Zhang, Rong-

Hua Li, and Guoren Wang. 2024. Rethinking Node-wise Propagation for

Large-scale Graph Learning. In Proceedings of the ACMWeb Conference 2024
(WWW ’24), May 13–17, 2024, Singapore, Singapore. ACM, New York, NY,

USA, 15 pages. https://doi.org/10.1145/XXXXXX.XXXXXX

1 INTRODUCTION
Recently, the rapid growth of web-scale graph mining applications

has driven needs for efficient analysis tools to tackle scalability

challenges in the real world, including social analysis [47, 74, 75]

and e-commerce recommendations [6, 61, 63]. Scalable graph neural

networks (GNNs), as a new machine learning paradigm for large-

scale graphs, have inspired significant interests due to their higher

efficiency than vanilla GNNs in node-level [31, 59, 73], edge-level [5,

52, 70], and graph-level [54, 64, 76] downstream tasks.

Fundamentally, the core of GNN’s scalability lies in the simpli-

fied aggregators or weight-free deep structural encoding. Therefore,

existing scalable GNNs fall into two categories: (i) Sampling-based

methods [13, 17, 28, 33, 69] employ well-designed strategies to se-

lect suitable graph elements (e.g., nodes or edges) for computation-

friendly message aggregators. Although they are effective, these

approaches are imperfect because they still face high communi-

cation costs in sampling and the sampling quality highly influ-

ences the performance. As a result, many recent advancements

achieve scalability by decoupling paradigm. (ii) Decouple-based

methods [14, 24, 26, 55, 78] treat weight-free feature propagation

as pre-process and combine propagated results with reasonable

learnable architectures to achieve efficient training. For example,

SGC [59] combines propagated node features with simple linear

regression and achieves performance comparable to carefully de-

signed GNNs. This relies on the homophily assumption [44, 50, 60],

where connected nodes share similar features and labels, thereby

helping predict node labels. We refer to the feature propagation

that does not distinguish between nodes as graph propagation.

Despite their effectiveness, most of the aforementioned scalable

GNNs fail to consider the unique roles played by each node in the

topology. Instead, they employ fixed propagation rules for compu-

tation. Therefore, there is still room for refining the granularity of

graph propagation. To improve it, NDLS [72] proposes node-wise

ar
X

iv
:2

40
2.

06
12

8v
1

 [
cs

.L
G

]
 9

 F
eb

 2
02

4

https://doi.org/10.1145/XXXXXX.XXXXXX
https://doi.org/10.1145/XXXXXX.XXXXXX

WWW ’24, May 13–17, 2024, Singapore, Singapore. Xunkai Li et al.

(b) ogbn-products(a) Cora

Figure 1: Performance in the Cora (2.7k nodes) and ogbn-
products (2449k nodes). The x-axis is the training epoch. The
red line denotes the baseline performance for all nodes.

propagation (NP), which quantifies the difference between the cur-

rent propagated node features and the theoretically over-smoothed

node features to enable custom propagation steps for each node.

NDM [32] introduces an extra power parameter to extend the graph

heat diffusion, separating the terminal time from the propagation

steps for each node. SCARA [42] further extends NP by the feature-

push operations, achieving attribute mining for each node. Despite

offering practical NP strategies, these methods rely on spectral

analysis and the generalized steady-state distribution of the fixed

propagation operator to customize the rigid NP strategy from a

global perspective. Therefore, these methods often yield high-bias

results due to over-reliance on the coarse propagation operator in

web-scale graphs with intricate topology. Meanwhile, node classifi-

cation on web-scale graphs heavily relies on the local node context

(LNC), which refers to a general characterization of nodes based on

their features, positions in the graph, and local topological structure.
Regrettably, existing methods ignore this crucial factor.

To further illustrate, we utilize the node degree to represent

the LNC, which directly influences the local connectivity of nodes.

Specifically, in Cora and ogbn-products, we classify nodes with

degrees less than or equal to 3 and 5 as Low-Deg and other nodes as

High-Deg, where Low-Deg at the graph’s periphery with fewer con-

nections and High-Deg located at the center of densely connected

communities. Subsequently, in Fig. 1, we use various propagation

operators combined with 3-layer SGC to evaluate the predictive

performance of nodes with different LNC (i.e., node degrees) in

these two datasets. The related notations can be referred to Sec. 2.1.

Intuitively, different propagation operators capture knowledge

based on nodes’ LNC from distinct perspectives during message

passing, resulting in the different node representations for clas-

sification: (i) the symmetric normalization propagation operator

D̂−1/2ÂD̂−1/2 [38] considers both current node and neighbors’ LNC
to perform unbiased message passing; (ii) the random walk-based

propagation operator D̂−1Â [69] only considers current node LNC,

leading to a more inclusive knowledge acquisition from its neigh-

bors without additional normalization; (iii) the reverse random

walk-based operator ÂD̂−1 [62] only considers neighbors’ LNC, en-
hancing the capacity to discriminate between neighbors to achieve

fine-grainedmessage aggregation. The following analysis illustrates

two key insights acquired through examining experimental results.

Key Insight 1: From the global perspective, we need to focus on
High-Deg in web-scale scenarios to mitigate the negative impacts
of high-bias propagation to ensure consistent performance. As de-
picted in Fig. 1, we observe that the Low-Deg performance remains

consistent (same trends in three operators) and stable (similar per-

formance to the red baseline) across two datasets. In contrast, the

inconsistent and unstable High-Deg performance has prompted us

to conduct a more in-depth analysis with different graph scales.

Research on complex networks [16, 20] indicates that the topol-

ogy of large-scale graphs is highly intricate, which results in the

emergence of densely connected communities with indiscernible

High-Deg. Consequently, ogbn-products possesses more intricate

and ambiguous LNC, misleading High-Deg during graph propaga-

tion. This explains why considering the LNC of neighbors through

ÂD̂−1 can yield better High-Deg performance but worse than base-

line. In contrast, the topology of small-scale Cora is relatively

straightforward, enabling High-Deg to outperform the baseline by

aggregating more favorable messages. This explains why the propa-

gation operator D̂−1/2ÂD̂−1/2 is beneficial for predicting High-Deg,
where both current node and its neighbors hold equal significance.

Key Insight 2: From the local perspective, leveraging appropriate
propagation operators across different scenarios to effectively capture
relevant LNC can improve node predictive performance. After analyz-
ing High-Deg in graphs of different scales, we conduct a thorough

examination of the roles played by different propagation operators

in consistent performance trends observed for Low-Deg. As de-

picted in small-scale Cora, the success of D̂−1Â in Low-Deg stems

from its enhanced focus on aggregating neighbor features, which

breaks potential feature sparsity issues caused by fewer neighbors.

In contrast, D̂−1/2ÂD̂−1/2 and ÂD̂−1 apply progressively enhanced
normalization to propagated messages based on neighbors’ LNC,

thereby constraining the aggregation of knowledge from Low-Deg

neighbors. This is also applicable to large-scale scenarios in Fig. 1(b).

Motivated by the above key insights, in this paper, we propose

Adaptive Topology-aware Propagation (ATP), which offers a plug-

and-play solution for existing GNNs. Specifically, ATP first iden-

tifies potential high-bias propagation through graph propagation

analysis and then employs a masking mechanism to regularize the

node-wise propagation mechanisms (motivated by Key Insight 1).
After that, ATP employs a general encoding approach to represent

node-dependent LNC without learning, which is then used to tailor

propagation rules for each node (motivated by Key Insight 2).
Our contributions. (1)New Perspective.To the best of our knowl-

edge, this work is the first to address the adverse impact of intri-

cate topology in web-scale graph mining applications on the semi-

supervised node classification paradigm, providing valuable em-

pirical analysis. (2) New Method.We propose ATP, a user-friendly

and flexible NP optimization strategy tailored for most scalable

GNNs, which is orthogonal to the existing optimization methods.

(3) SOTA Performance.We conduct experiments on prevalent scal-

able GNNs and 12 benchmark datasets including the representative

large-scale ogbn-papers100M. Empirical results demonstrate that

ATP has a significant positive impact on existing scalable GNNs (up

to 4.96% higher). Furthermore, when combined with existing NP op-

timization strategies, it exhibits a complementary effect, resulting

in additional performance gains.

Rethinking Node-wise Propagation for Large-scale Graph Learning WWW ’24, May 13–17, 2024, Singapore, Singapore.

2 PRELIMINARIES
2.1 Problem Formulation
Consider a graph G = (V, E) with |V| = 𝑛 nodes and |E | = 𝑚

edges, the adjacency matrix (including self-loops) is Â ∈ R𝑛×𝑛 , the
feature matrix is X = {𝑥1, . . . , 𝑥𝑛} in which 𝑥𝑣 ∈ R𝑓 represents

the feature vector of node 𝑣 , and 𝑓 represents the dimension of the

node attributes. Besides, Y = {𝑦1, . . . , 𝑦𝑛} is the label matrix, where

𝑦𝑣 ∈ R |Y | is a one-hot vector and |Y| represents the number of

the classes. The semi-supervised node classification task is based

on the topology of labeled setV𝐿 and unlabeled setV𝑈 , and the

nodes inV𝑈 are predicted with the model supervised byV𝐿 .

2.2 Scalable Graph Neural Networks
Motivated by the spectral graph theory and deep neural networks,

GCN [38] simplifies the topology-based convolution operator [4]

by the first-order approximation of Chebyshev polynomials [37].

The forward propagation of the 𝑙-th layer in GCN is formulated as

X(𝑙) = 𝜎 (ÃX(𝑙−1)W(𝑙)), Ã = D̂−1/2ÂD̂−1/2, (1)

where D̂ represents the degree matrix of Â, W represents the train-

able weights, and 𝜎 (·) represents the non-linear activation function.

Intuitively, GCN aggregates the neighbors’ representation. Such a

simple paradigm is proved to be effective in various graph-based

downstream tasks [25, 35, 66]. However, GCN suffers from severe

scalability issues since it executes the feature propagation and

transformation recursively and is trained in a full-batch manner.

To avoid the recursive neighborhood over expansion, sampling and

decouple-based approaches have been investigated.

Sampling-basedmethods.Regarding node-level sampling tech-

niques, GraphSAGE [28] employs random selection to extract a

fixed-size set of neighbors for computation. VR-GCN [13] delves

into node variance reduction, achieving size reduction in samples

at the expense of additional memory usage. For layer-level sam-

pling, FastGCN [12] proposes importance-based neighbor selec-

tion to minimize sampling variance. AS-GCN [33] introduces an

adaptive layer-level sampling method for explicit variance reduc-

tion. Similarly, LADIES [79] adheres to layer constraints, crafting a

neighbor-dependent and importance-based sampling approach. As

for the graph-level sampling strategies, Cluster-GCN [17] initially

clusters nodes before extracting nodes from clusters, while Graph-

SAINT [69] directly samples subgraphs for mini-batch training.

GraphCoarsening [34] creates a coarse-grained graph for training.

ShaDow [68] first extracts a local subgraph for target entities and

employs GNN of arbitrary depth on the subgraph.

Decouple-based methods. Recent studies [71] have observed
that non-linear feature transformation contributes little to perfor-

mance as compared to graph propagation. Thus, a new direction

for scalable GNN is based on the SGC [59], which reduces GNNs

into a linear model operating on 𝑘-layer propagated features

X(𝑘) = Ã𝑘X(0) , Y = softmax

(
WX(𝑘)

)
, (2)

where X(0) = X and X(𝑘) is the 𝑘-layer propagated features. As

the propagated features X(𝑘) can be precomputed, SGC is easy to

scale to large graphs. Inspired by it, SIGN [26] proposes to con-

catenate the learnable propagated features

[
X(0)W0, . . . ,X(𝑘)W𝑘

]
.

S
2
GC [78] proposes to average the propagated results from the per-

spective of spectral analysis X(𝑘) =
∑𝑘
𝑙=0

Ã𝑙X(0) . GBP [14] utilizes

the 𝛽 weighted manner X(𝑘) =
∑𝑘
𝑙=0

𝑤𝑙 Ã𝑙X(0) ,𝑤𝑙 = 𝛽 (1 − 𝛽)𝑙 .
GAMLP [73] achieves information aggregation based on the atten-

tion mechanisms X(𝑘) = Ã𝑘X(0) ∥∑𝑘−1
𝑙=0

𝑤𝑙X(𝑙) , where attention
weight 𝑤𝑙 has multiple calculation versions. GRAND+ [24] pro-

poses a generalized forward push propagation algorithm to obtain

P̃, which is used to approximate 𝑘-order PageRank weighted Ã with

higher flexibility and efficiency. Then it obtains propagated results

X̃ = P̃WX(0) with P̃-based data augmentation and learnable W.

Node-wise Propagation Optimization Strategies. Despite
the aforementioned scalable GNNs utilizing computation-friendly

message aggregators or decoupling paradigms to extend learnable

architectures to web-scale graphs, the majority of existing meth-

ods still adhere to fixed propagation rules. This approach, which

does not discriminate between nodes, inadvertently overlooks the

uniqueness of each node within the propagation. Hence, recent

studies have introduced fine-grained 𝑘-step NP optimization strate-

gies to improve the predictive performance of scalable GNNs. The

optimization paradigm can be formally expressed as

X̃ =

𝑘∑︁
𝑙=0

Π · L · H · X [row, col] , Π =

𝑙∑︁
𝑖=0

𝑤𝑖 ·
(
D̂𝑟−1ÂD̂−𝑟

)𝑖
,

L = Diag {I [𝑙𝑢] : ∀𝑢 ∈ V} , 𝑘 = max {𝑙𝑢 ,∀𝑢 ∈ V} ,

H =
𝜔𝑙

(𝑙 !)𝜌 ·𝐶 , 𝐶 =

∞∑︁
𝑙=0

𝜔𝑙

(𝑙 !)𝜌 ← 𝑒−𝜔
𝜔𝑙

𝑙 !
≈ 𝑒−𝑡

∞∑︁
𝑖=0

𝑡𝑖

𝑖!
,

(3)

where propagated feature X̃ is obtained by the various NP optimiza-

tion perspectives (i.e., L, H, Π, and X [row, col]). In other words, the

NP optimization perspectives are diverse. NDLS [72] and NDM [32]

customize node-wise propagation step, where 𝑙𝑢 represents the

propagation step for node 𝑢, while L denotes the diagonal matrix

composed of indicator vectors I, used to compute the appropriate

propagation results, i.e., I [𝑙𝑢] = 1 if 𝑙 ≤ 𝑙𝑢 ≤ 𝑘 and I [𝑙𝑢] = 0 oth-

erwise. As we know, by solving the differential function of Graph

Heat Equation H at time 𝑡 defined by [18], GDC [27] and DGC [57]

obtain the underlying Heat Kernel PageRank parameterized by 𝜔

for fine-grained NP optimization. Notably, we focus solely on de-

scribing the heat kernel function used for propagation, omitting the

node features X. Additionally, for the sake of reader-friendliness,

we present H and Π in a decoupled manner. Building upon this,

NDM introduces normalization factor 𝐶 and power parameter 𝜌 to

improve its expressiveness and generalizability, which can control

change tendency for general purposes. Furthermore, SCARA [42]

achieves the discovery of potential correlations between nodes by

performing fine-grained feature-push operations, transforming the

computation entities from X [row, :] to X [:, col].
Despite their effectiveness, essential propagation rules are ig-

nored. Specifically, Π is the unified graph propagation equation,

which serves as an effective paradigm to model various node prox-

imity measures and basic GNN propagation formulas (i.e., ÃW(𝑙)

in GCN and Ã𝑙 in SGC). For a given node 𝑢, a node proximity query

yields Π(𝑣) that represents the importance of 𝑣 with respect to 𝑢.

It captures intricate structural insights from the 𝑙-hop neighbors,

which is guided by weight sequence𝑤𝑖 and probabilities obtained

WWW ’24, May 13–17, 2024, Singapore, Singapore. Xunkai Li et al.

from a 𝑙-step propagation that originates from a source node 𝑢

and extends to every node within the graph. More deeply, the

propagation kernel coefficient 𝑟 ∈ [0, 1] not only affects transport

probabilities during the propagation for modeling node proximity

but also captures pivotal LNC knowledge detailed in Sec. 1 (three

propagation operators obtained by setting 𝑟 = 0, 𝑟 = 1/2, 𝑟 = 1).

3 ATP FRAMEWORK
As a plug-and-play node-wise propagation optimization strategy,

the computation of ATP is independent of the graph learning and

remains orthogonal to existing NP methods. It commences by em-

ploying a masking mechanism for correcting potential high-bias

propagation from a global perspective. Then, ATP represents the

LNC to custom propagation rules for each node in a weight-free

manner from a local perspective. Based on this, ATP serves to curtail

redundant computations and provides performance gains by high-

bias propagation correction and LNC encoding for existing scalable

GNNs. The complete algorithm can be referred to as Algorithm 1.

3.1 High-bias Propagation Correction
Propagation Operator. For existing GNNs, numerous variations

of the Laplacian matrix have been widely employed as propagation

operators, where P = D̂−1Â stands out due to its intuitive and ex-

plainable nature. Let 1 = 𝜆1 ≥ 𝜆2 ≥ . . . ≥ 𝜆𝑛 > −1 be the eigenval-
ues of P. Suppose the graph is connected, for any initial distribution

𝜋0, let �̃� (𝜋0) = lim𝑘→∞ 𝜋0P𝑘 , where �̃� (𝜋0) represents the stable
state under infinite propagation. Then according to [21], we have

�̃�𝑖 = �̃� (𝜋0)𝑖 = 1

𝑛

∑𝑛
𝑗=1 P𝑗𝑖 , where �̃�𝑖 is the 𝑖-th component. If P is

not connected, we can divide P into connected blocks. Then for each

blocks 𝐵𝑔 , there always be �̃� (𝜋0)𝑖 = 1

𝑛𝑔

∑
𝑗∈𝐵𝑔 P𝑗𝑖 ·

∑
𝑗∈𝐵𝑔 (𝜋0) 𝑗 ,

where𝑛𝑔 is the number of nodes in𝐵𝑔 . Tomake the following deriva-

tion more reader-friendly, we assume P is connected. Therefore, �̃�

is independent to 𝜋0, thus we replace �̃� (𝜋0) by �̃� . To investigate

the fine-grained graph propagation, we have the following lemmas

Lemma 1. The difference between the stable state and 𝑘-step prop-
agated results represents the upper bound of the convergence rate.����(P𝑘𝑒𝑖) 𝑗 − �̃� 𝑗 ���� ≤

√︄
˜𝑑 𝑗

˜𝑑𝑖
𝜆𝑘
2
, (4)

where ˜𝑑 denotes the degree of node plus 1 (to include itself by self-loop).

Lemma 2. For a graph G = (V, E) with the average degree 𝑑G ,

we have 1 − Δ𝜆 = 𝑂

(
1/
√︁
𝑑G

)
, where Δ𝜆 is the spectral gap of G.

Global Graph Propagation. Fundamentally, the core of graph

propagation is the trade-off between the node-wise optimal con-

vergence diameters and over-smoothing. This optimal convergence

diameter indicates the receptive field required for generating the

most effective node representations, whereas exceeding this range

would lead to negative impacts due to over-smoothing. While some

methods propose node-adaptive 𝑘 for aggregating valuable informa-

tionwithin𝑘-hop neighbors, there are other pivotal factors that play

significant roles in achieving convergence. Therefore, we adopt 𝑘-

step propagation for all nodes and analyze the varying propagation

states from a global perspective to obtain the Theorem 1.

Theorem 1. The upper bound on the convergence rate of 𝑘-step
graph propagation hinges on quantifying the discrepancy between
the current state and the stable state, which is defined as

| |�̃� − 𝜋𝑖 (𝑘) | |2 ≤
√︄

2𝑚 + 𝑛
˜𝑑𝑖

𝜆𝑘
2
, (5)

where the pivotal factors in striking a balance between effective con-
vergence and over-smoothing are the High-Deg in large-scale graphs.

Proof. To consider the impact of each node on the others sep-

arately, let 𝜋0 = 𝑒𝑖 , where 𝑒𝑖 is a one-hot vector with the 𝑖-th

component equal to 1. According to [19], we have Lemma 1.

Eq. (4) shows (P𝑘𝑒𝑖) 𝑗 symbols the 𝑗-th component of P𝑘𝑒𝑖 , where
the 𝑘-step propagation started from node 𝑖 . We denote P𝑘𝑒𝑖 as 𝜋𝑖 (𝑘),
then have the following total convergence rate variations of node 𝑖

| |�̃� − 𝜋𝑖 (𝑘) | |22 =
𝑛∑︁
𝑗=1

(
�̃� 𝑗 − 𝜋𝑖 (𝑘) 𝑗

)
2

≤
∑𝑛
𝑗=1

˜𝑑 𝑗

˜𝑑𝑖
𝜆2𝑘
2

| |�̃� − 𝜋𝑖 (𝑘) | |2 ≤
√︄

2𝑚 + 𝑛
˜𝑑𝑖

𝜆2𝑘
2

=

√︄
2𝑚 + 𝑛

˜𝑑𝑖
𝜆𝑘
2
,

(6)

where𝑚 and 𝑛 represent the number of edges and nodes. The

above inequality indicates that the factors influencing the conver-

gence rate of propagation include the degree of the current node 𝑖

denoted as
˜𝑑𝑖 , the second largest eigenvalue 𝜆 determined by the

propagation operator, and the number of propagation step 𝑘 .

In addition to 𝑘 , the first influencing factor ˜𝑑𝑖 is determined by

the degree of the current node 𝑖 . Since ˜𝑑𝑖 ≥ 1 (with self-loop), it

has minimal influence on the upper bound of the convergence rate

for Low-Deg. In contrast,
˜𝑑𝑖 is directly associated with the densely

connected communities (i.e., High-Deg). This explains the greater

stability of the Low-Deg shown in Fig. 1 compared to the High-Deg.

Then, we delve into an in-depth analysis of 𝜆2, narrowing our focus

to the large-scale graphs. According to [19], we have Lemma 2.

The spectral gap Δ𝜆 denotes the difference between the magni-

tudes of the two largest eigenvalues of the propagation operator P,
where 𝜆1 = 1. Therefore, the sparse graphs (i.e., small-scale Cora)

with a small value of 𝑑G result in a relatively large value of 𝜆2,

indicating a faster convergence rate. Contrastingly, dense graphs

(i.e., large-scale ogbn-products) with a large value of 𝑑G yield a

smaller value of 𝜆2, presenting a unique convergence challenge.

Building upon this, we have determined that the key to achieving a

delicate equilibrium between efficient convergence and mitigating

over-smoothing resides within the High-Deg in large-scale graphs.

□

To improve convergence efficiency in large-scale scenarios, we

can tackle the problem from two perspectives (excluding 𝑘): (i) de-

creasing
˜𝑑𝑖 and (ii) amplifying 𝜆2. Fortunately, we found that by

appropriately reducing the degrees of High-Deg—thereby eliminat-

ing redundant connections—we can achieve both goals concurrently

while reducing the computational costs of existing scalable GNNs.

Masking for Correction. From a structure-aware perspective,

we analyze the global graph propagation through Theorem 1 and

find that encoding deep graph structural information of High-Deg

within large-scale graphs presents difficulties, which leads to a

Rethinking Node-wise Propagation for Large-scale Graph Learning WWW ’24, May 13–17, 2024, Singapore, Singapore.

Algorithm 1 Adaptive Topology-aware Propagation

Input: Graph G, mask ratio𝑀 , threshold 𝜃 , hyperparameters𝐶, 𝜖 ;

Output: Node-wise propagation operator Π̃
1: Select an appropriate 𝜃 by the truncation of 𝜖-based inequality

| |�̃� − 𝜋𝑖 (𝑘) | |2 ≤ 𝜖 or handcraft manner;

2: Correct the high-bias propagation by Eq. (7);

3: Calculate the centrality-based LNC by Eq. (8) and Eq. (9)

4: Calculate the connectivity-based LNC encoding by Eq. (10);

5: Get node-wise propagation kernel coefficients by Eq. (11);

6: Obtain ATP propagation equation by Eq. (11);

struggled trade-off between effective convergence diameters and

over-smoothing. To break these limitations, formally, we sample

a subset of nodes
˜V ⊂ V and mask a certain percentage of their

one-hop connections with a mask token [MASK], i.e., topology

indicator vector I[𝑀] ∈ R𝑛 with 𝜃 -based node selection threshold.

Thus, the corrected topology [A𝑢] of node 𝑢 can be defined as:

[A𝑢] =
{
I[𝑀] ⊙ A𝑢 𝑢 ∈ ˜V
A𝑢 𝑢 ∉ ˜V

. (7)

Furthermore, from a feature-oriented perspective, unlike high-

resolution images and rich texts in CV and NLP, graph learning

often involves sparsely informative node features (e.g., one-hot

vectors). In large-scale graphs, disrupted homophily assumptions

of High-Deg caused by intricate topology lead to the connected

neighbors diverging from the current node. Consequently, High-

Deg struggle to maintain their uniqueness during heterophilous

message aggregation. Fortunately, Eq. (7) enhances the robustness

of High-Deg by regularizing the connection of misleading messages.

3.2 Weight-free LNC Encoding
Based on the Sec. 1, we highlight the influence of LNC on predic-

tions. A natural solution is position encoding [9, 22, 40], which

helps GNNs additionally incorporate node positions. However,

such segregated encoding method could inadvertently lead to mis-

aligned learning objectives (i.e., positions and classifications), im-

pacting the expressive capacity of GNNs. Although graph transform-

ers [8, 36, 43] can mitigate this, they introduce extra computational

costs, particularly dealing with web-scale graphs. Further analysis

can be found in Sec. 4.2 and Appendix A.4-A.5.

Motivated by the Fig. 1, different operators, guided by the propa-

gation kernel coefficient 𝑟 , capture LNC from different perspectives.

Specifically, Low-Deg requires smaller 𝑟 to avoid unnecessary nor-

malization during aggregation, acquiring more knowledge from

neighbors. High-Deg benefit from relatively larger 𝑟 , enhancing

their capacity to discern neighbors. Building upon these insights, we

propose weight-free LNC encoding, which employs centrality and

connectivity measures to encode node positions and local topological
structure in a weight-free manner. Remarkably, this strategy seam-

lessly integrates into feature-oriented graph propagation equations

and coexists harmoniously with existing NP optimization strategies.

Given an undirected graph, the general node-adaptive propagation

kernel coefficients can be formulated as diagonal R =
∑𝐾
𝑘=1

𝛼𝑘P𝑘R0,

where P is the iteration matrix and R0 is the initial coefficients. We

use 𝐾 = 1 and high-bias propagation optimized P = [D] by default.

Centrality-based Position Encoding. In our implementation,

we employ degree and eigenvector centrality for encoding node

positions in the graph. In terms of degree-based position encoding,

nodes at the center of the network (i.e., High-Deg) indicate higher

influence during propagation corresponding to larger 𝑟 , where 𝑟 is

the optimized propagation kernel coefficient 𝑟 .

Degree

(
𝛼1 = 1,R0 = Diag

(
1

𝑛 − 1 , . . . ,
1

𝑛 − 1

))
:=

R𝑑𝑔 = 𝛼1 · [D] · R0 = Diag

(
[𝑑]1
𝑛 − 1 , . . . ,

[𝑑]𝑛
𝑛 − 1

)
.

(8)

For eigenvector-based position encoding, a node’s centrality de-

pends on its neighbors, which presents a unique spectral node po-
sitions in the topology. This implies that High-Deg within densely

connected communities possess higher influence, yielding larger 𝑟 .

Eigenvector (𝛼1 = 1/𝜆max, P = [A] ,R0 = (u11, . . . , u1𝑛)) :=

R𝑒𝑣 = Diag (𝛼1 · [A] ·R0)=Diag
(

1

𝜆max

· [A] · (u11, . . . , u1𝑛)
)
,
(9)

where the vector R0 is the eigenvector corresponding to the largest

eigenvalue 𝜆max of the optimized adjacency matrix [A]. Based on

the R𝑒𝑣 , High-Deg pulls 𝑟 − 1 closer to 0 to discern neighbors for

message aggregation, while Low-Deg pushes 𝑟 − 1 towards -1 to
acquire more neighbor knowledge. According to D̂𝑟−1ÂD̂−𝑟 from
Eq.(3), these trends satisfy the observations outlined in Sec.1.

As widely recognized, efficiently performing accurate eigende-

composition on web-scale graphs remains an open problem. How-

ever, we have opted to include R𝑒𝑣 as a component in our position

encoding strategy. This choice stems from the fact that eigenvec-

tors serve as spectral representations of nodes within the topology,

offering a precise depiction of a node’s position. Furthermore, we

can leverage numerical linear algebra techniques to rapidly approx-

imate solutions with error guaranteed [46, 49, 51]. Hence, under

affordable computational overhead, we propose to utilize both R𝑑𝑔
and R𝑒𝑣 to further improve performance. Alternatively, if compu-

tational constraints arise, selecting solely degree-based position

encoding remains a viable option. We further discuss this in Sec. 4.

Connectivity-based Local Topological Structure Encoding.
After that, ATP represents the local topological structure of each
node in the graph, which closely intertwines with the connectivity

of their neighbors and determines the unique propagation rules.

In other words, this reveals the localized connectivity patterns,

where stronger connectivity corresponds to larger 𝑟 , implying more

consideration of the intricate neighbors, and vice versa. For instance,

in social networks, nodes often form cohesive groups characterized

by a notably dense interconnection of ties. This tendency is usually

higher than the average probability of a random node pair [29, 58].

Therefore, we utilize local cluster connectivity with 𝛼1 = I(N) to
encode this local topological structure for each node in the graph,

Cluster

(
R0 = Diag

(
1

[𝑑]1 ([𝑑]1 − 1)
, . . . ,

1

[𝑑]𝑛 ([𝑑]𝑛 − 1)

))
:=

R𝑐𝑢 = 𝛼1 · [D] · R0 = Diag

(
[𝑑]1 · I(N1)
[𝑑]1 ([𝑑]1 − 1)

, . . . ,
[𝑑]𝑛 · I(N𝑛)
[𝑑]𝑛 ([𝑑]𝑛 − 1)

)
,

(10)

where N𝑖 denotes the one-hop neighbors of 𝑖 and indicator vectors

I (N𝑖) is used to compute the neighborhood connectivity of 𝑖 , i.e.,

I (N𝑖) = 2

��𝑒 𝑗𝑘 �� if 𝑣 𝑗 , 𝑣𝑘 ∈ N𝑖 , 𝑒 𝑗𝑘 ∈ E and I (N𝑖) = 0 otherwise.

WWW ’24, May 13–17, 2024, Singapore, Singapore. Xunkai Li et al.

Node-adaptive Propagation Kernel. After that, we obtain the

optimized propagation kernel coefficient, which is denoted as a

diagonal matrix R̃ ∈ R𝑛×𝑛 . Building upon this, the formal represen-

tation of node-wise propagation equation Π̃ through weight-free

LNC encoding combined with Eq. (3) is as follows

R̃ = 𝐶 ·
(
R𝑑𝑔 + R𝑒𝑣 + R𝑐𝑢

)
,

Π̃ =

𝑙∑︁
𝑖=0

𝑤𝑖 ·
([

D̂
] R̃−1 [

Â
] [

D̂
]−R̃

)𝑖
,

(11)

where 𝐶 is the normalization factor,

[
Â
]
is the topology with self-

loop after high-bias propagation correction, and

[
D̂
]
is the cor-

responding degree matrix. Remarkably, Π̃ can be seamlessly inte-

grated into any GNN dependent on graph propagation equations

(e.g., message-passing mechanisms) while maintaining orthogo-

nality with existing NP strategies (independent of L, H, and X).

Furthermore, due to ATP directly optimizing the Π̃, its positive im-

pact on decouple-based scalable GNNs is particularly pronounced.

4 EXPERIMENTS
In this section, we first introduce experimental setups, including

datasets, baselines, and environments. Due to space constraints, we

provide additional experimental details and evaluation discussion

in the Appendix [41]. We aim to answer the following questions to

verify the effectiveness of our proposed ATP: Q1: How does ATP

perform in improving backbones? Meanwhile, can ATP coexist har-

moniously with existing NP optimization strategies? Q2: If ATP is

effective, what contributes to its performance gain for backbones?

Q3: If we insert ATP into the backbone, how does it affect the run-

ning efficiency? Q4: Compared to other NP optimization strategies,

how does ATP perform when applied to sparse web-scale graphs?

4.1 Experimental Setup
Datasets.We evaluate the performance of ATP under both trans-

ductive and inductive settings. Due to space constraints, the statis-

tics and description details are summarized in Appendix A.1.

Baselines. We conduct experiments using the following back-

bone GNNs: (i) Representative full-batch GNNs: GCN, GAT, GC-

NII, GATv2. (ii) Sampling-based GNNs: GraphSAGE, Cluster-GCN,

GraphSAINT, ShaDow. (iii) Decouple-based GNNs: SGC, APPNP,

PPRGo, GBP, SIGN, S
2
GC, AGP, GAMLP, GRAND+. Based on this,

we compare ATPwith existing NP optimization strategies, including

DGC, NDLS, NDM, and SCARA. To alleviate the randomness and

ensure a fair comparison, we repeat each experiment 10 times for

unbiased performance. Unless otherwise stated, we adopt GAMLP

as the backbone and eigenvector-based LNC.

Hyperparameter Settings. The hyperparameters in the backbone

GNNs and NP optimization strategies are set according to the orig-

inal paper if available. Otherwise, we perform a hyperparameter

search via the Optuna [1]. For our proposed ATP, we explore the

optimized 𝜃 for masking mechanisms in a handcrafted manner,

which contains the selection ratios in all degree-ranked connected

densely nodes (Top-1%-20%) and the sampling ratio range for other

relatively sparse nodes is 0-0.5. The mask token [𝑀] and the nor-

malization factor 𝐶 are explored within the ranges of 0 to 1.

4.2 Performance Comparison
Backbone Improvement. To answer Q1, we present ATP’s opti-
mization results for backbones in Tables 1 and 2. The highlighted

improvements demonstrate the impressive performance of ATP as

a plug-and-play NP optimization strategy. Building upon this, we

observe that ATP’s performance improvement is more pronounced

in large-scale graphs compared to small-scale graphs. This is at-

tributed to the fact that in large-scale graphs, ATP’s propagation

correction strategy masks more potential high-bias edges, and LNC

encoding allows for finer-grained exploration of intricate topology.

Compared to Weighted Aggregation. In Table 1, GraphSAGE,

GAT, and GATv2 adopt well-known attention mechanisms for

weighted message aggregation (marked with *). This node-pairs

attention strategy is an additional alternative solution to the graph

propagation equation (i.e., Π in Eq. (3)), making ATP cannot co-

exist with this learnable aggregation strategy. It’s worth noting

that although these attention-based approaches intuitively have the

potential for better predictive performance, their limited receptive

fields due to first-order aggregation and the modeling complexity

imposed by intricate topologies often restrict their competitive per-

formance and scalability when dealing with web-scale graphs (i.e.,

out-of-memory (OOM) error). Further detailed discussions about

attention methods and ATP can be found in Appendix A.4-A.5.

Compared to Existing NP Optimization Strategies. To answer

Q1 from the perspective of generalizability, we provide perfor-

mance gains brought by different NP optimization strategies for

backbones in Table 3 under both transductive and inductive settings.

We observe that ATP consistently produces competitive results in

the context of large-scale graph learning, thereby validating the

claims made in Sec. 1 that integrating high-bias propagation correc-

tion and LNC encoding can improve the comprehension of intricate

topologies. Meanwhile, SIGN★ and S
2
GC★ represent the best results

of integrating ATP with SCARA and NDM optimization strategies

by Eq. (3). We observe impressive results in their combination,

validating that ATP coexists harmoniously with existing methods.

4.3 Ablation Study and In-depth Analysis
To answer Q2, we investigate the contributions of high-bias prop-
agation correction (HPC), LNC encoding (LNC), and eigenvector-

based LNC (Eigen) to ATP, which is shown in Table. 4.

High-bias Propagation Correction. For HPC, it is applied to

reduce potential high-bias propagation through masking mecha-

nisms. Its primary goal is to improve running efficiency, reflected in

performance gains and reduced computational costs (see Sec. 3.1).

Therefore, HPC not only achieves an average improvement of 0.48%

but also offers a solution for enhancing model scalability. For in-

stance, in Table 1, HPC makes Cluster-GCN and GraphSAINT train-

able on ogbn-papers100M. More details can be found in Sec. 4.4.

Building upon this, we further analyze HPC by the selection

ratio of High-Deg for masking in Fig. 2. The experimental results

indicate that as the masking rate increases from Top-1%, there is a

consistent improvement in performance. In most cases, we suggest

that select nodes with degrees in the Top-10%-15% of the degree

ranking (from high to low) for masking. Excessive masking nodes

may have a negative impact on predictions due to broken topology.

More details can be found in Appendix A.6.

Rethinking Node-wise Propagation for Large-scale Graph Learning WWW ’24, May 13–17, 2024, Singapore, Singapore.

Table 1: Model performance. The blue and red colors are the improvement of small- and large-scale datasets from ATP.

Type Models Cora CiteSeer PubMed Photo Computer CS Physics arxiv products papers100M Improv.

Full-batch

GNNs

GCN 81.8±0.5 70.8±0.5 79.6±0.4 91.2±0.6 82.4±0.4 90.7±0.2 92.4±0.8 71.9±0.2 76.6±0.2 OOM ↑1.86%
⇑4.22%GCN+ATP 83.7±0.4 72.6±0.5 81.0±0.3 92.6±0.5 83.8±0.4 92.2±0.2 93.9±0.7 74.5±0.2 80.3±0.2 OOM

GCNII 83.2±0.5 72.0±0.6 79.8±0.4 91.5±0.8 82.6±0.5 91.0±0.3 92.8±1.2 72.7±0.3 79.4±0.4 OOM ↑1.71%
⇑4.45%GCNII+ATP 84.6±0.6 73.2±0.5 81.6±0.5 92.8±0.7 83.8±0.4 92.8±0.2 94.3±1.0 75.4±0.2 83.5±0.3 OOM

*GAT 82.2±0.7 71.3±0.7 79.4±0.5 91.0±0.8 81.8±0.5 90.2±0.3 91.8±1.0 71.5±0.1 OOM OOM -

*GATv2 82.8±0.8 71.5±0.8 79.3±0.4 91.5±0.6 82.5±0.5 91.3±0.4 92.2±1.1 72.8±0.2 OOM OOM -

Sampling

GNNs

*GraphSAGE 81.0±0.6 70.5±0.7 79.2±0.6 89.7±0.8 81.2±0.6 90.5±0.4 91.5±1.0 71.3±0.4 78.5±0.1 65.1±0.2 -

Cluster-GCN 81.6±0.5 71.1±0.6 79.3±0.4 90.8±0.7 82.2±0.5 90.8±0.3 91.8±1.1 71.5±0.3 78.8±0.2 OOM ↑1.94%
⇑5.07%Cluster-GCN+ATP 83.4±0.6 73.5±0.5 80.7±0.5 92.3±0.6 83.8±0.5 92.0±0.3 93.4±1.0 74.4±0.3 83.6±0.2 66.4±0.2

GraphSAINT 81.3±0.5 71.5±0.6 79.3±0.5 90.5±0.8 81.6±0.5 90.4±0.3 92.0±1.2 71.9±0.3 80.3±0.3 OOM ↑2.06%
⇑4.20%GraphSAINT+ATP 83.5±0.5 73.3±0.7 81.0±0.4 92.0±0.7 83.6±0.6 91.8±0.2 93.6±1.0 74.9±0.2 83.7±0.4 67.2±0.2

ShaDow 81.4±0.7 71.6±0.5 79.6±0.5 90.8±0.9 82.0±0.6 91.0±0.3 92.2±1.0 72.1±0.2 80.6±0.1 67.1±0.2 ↑2.14%
⇑4.38%ShaDow+ATP 83.8±0.8 73.4±0.6 81.3±0.5 92.4±0.8 84.0±0.5 92.5±0.3 93.6±0.8 75.8±0.2 84.8±0.2 69.8±0.1

Table 2: Model performance on decoupled GNNs.

Models arxiv prodcuts papers100M Improv.

SGC 71.84±0.26 75.92±0.07 64.38±0.15 ⇑4.48%
SGC+ATP 74.47±0.21 82.06±0.10 67.25±0.12

APPNP 72.34±0.24 78.84±0.09 65.26±0.18 ⇑4.51%
APPNP+ATP 75.16±0.27 83.58±0.12 69.33±0.15

PPRGo 72.01±0.18 78.45±0.16 65.87±0.20 ⇑4.60%
PPRGo+ATP 74.56±0.24 83.88±0.12 69.45±0.16

GBP 72.13±0.25 78.49±0.15 64.10±0.18 ⇑4.30%
GBP+ATP 74.96±0.22 83.66±0.20 68.78±0.12

AGP 72.45±0.20 78.34±0.13 65.53±0.15 ⇑4.55%
AGP+ATP 75.08±0.16 83.58±0.16 69.16±0.18

GRAND+ 73.86±0.28 79.55±0.20 66.86±0.17 ⇑4.24%
GRAND++ATP 75.69±0.25 84.70±0.14 70.27±0.24

Table 3: Model performance with NP optimization strategies.

Model products papers100M Flickr Reddit

SIGN 79.26±0.1 65.34±0.2 52.46±0.1 93.41±0.0

SIGN+DGC 82.16±0.2 67.84±0.2 53.32±0.1 94.92±0.1

SIGN+NDLS 81.92±0.1 68.10±0.1 53.74±0.1 94.58±0.0

SIGN+NDM 82.48±0.2 68.45±0.1 53.95±0.1 95.32±0.1

SIGN+SCARA 82.20±0.2 67.91±0.2 54.18±0.2 94.64±0.1

SIGN+ATP 83.65±0.1 68.70±0.2 54.06±0.1 95.54±0.0
SIGN★ 83.95±0.2 69.24±0.2 54.83±0.2 96.08±0.1

S
2
GC 78.84±0.1 65.15±0.1 52.10±0.1 92.14±0.0

S
2
GC+DGC 81.75±0.1 67.42±0.2 53.24±0.1 94.22±0.1

S
2
GC+NDLS 82.18±0.2 67.86±0.1 53.68±0.1 94.10±0.1

S
2
GC+NDM 82.84±0.2 68.20±0.2 54.02±0.2 94.86±0.1

S
2
GC+SCARA 82.76±0.2 68.04±0.2 54.25±0.1 94.57±0.1

S
2
GC+ATP 82.32±0.1 68.10±0.1 54.48±0.1 95.28±0.0
S
2
GC★ 83.68±0.2 68.87±0.2 55.16±0.2 96.18±0.1

Local Node Context Encoding. As mentioned in Sec.1, we aim

to customize propagation rules for each node in large-scale graphs

with intricate topologies, while adhering to the Π in Eq.(3). The

key insight is to focus on LNC composed of node features, positions

Table 4: Ablation on transductive and inductive settings.

Model arxiv products Flickr Reddit

GCNII 72.74±0.3 79.43±0.4 53.11±0.1 93.65±0.1

GCNII+ATP 75.42±0.2 83.51±0.3 53.96±0.1 95.04±0.0

w/o HPC 75.04±0.4 82.97±0.4 53.68±0.2 94.76±0.1

w/o Eigen 74.83±0.3 82.72±0.3 53.55±0.1 94.65±0.0

w/o LNC 73.66±0.2 80.63±0.2 53.42±0.1 94.14±0.0

ShaDow 72.13±0.2 80.64±0.3 52.71±0.2 94.10±0.0

ShaDow+ATP 75.84±0.2 84.80±0.2 53.80±0.1 95.49±0.0

w/o HPC 75.37±0.3 84.04±0.2 53.48±0.2 95.02±0.1

w/o Eigen 75.04±0.2 83.85±0.3 53.28±0.1 94.84±0.1

w/o LNC 73.03±0.2 81.53±0.2 52.95±0.1 94.41±0.0

GAMLP 73.43±0.3 81.41±0.2 53.86±0.2 94.25±0.1

GAMLP+ATP 76.22±0.2 85.64±0.2 55.64±0.1 95.88±0.0

w/o HPC 75.73±0.3 84.96±0.3 54.85±0.2 95.50±0.1

w/o Eigen 75.69±0.2 84.85±0.3 54.47±0.1 95.33±0.1

w/o LNC 74.23±0.2 82.64±0.2 54.05±0.1 94.86±0.0

in the graph, and local topological structure, as it possesses unique
prompts that aid the model in node-level classification downstream

task. Building upon this foundation, we conduct comprehensive

ablation experiments to evaluate the effectiveness of weight-free

LNC encoding in ATP. Experimental results in Table 4 confirm our

claims, for instance, LNC helps improve sampling-based ShaDow’s

predictive performance on large-scale ogbn-products from 81.53

to 84.80. Moreover, Eigen, as a fine-grained position encoding in

the spectral domain, plays a significant role in performance gains.

Therefore, we suggest incorporating Eigen as part of LNC encoding,

with acceptable additional computational overhead (see Sec. 3.2).

To further validate the effectiveness of LNC, we provide experi-

mental results in Fig. 3 using different propagation kernel coeffi-

cients. We observe that, in ogbn-papers100M consisting more High-

Deg, larger values of 𝑟 yield better results in general. Conversely,

in Flickr, smaller values of 𝑟 are recommended. In both cases, the

advantage of ATP-LNC is significant. Specifically, ATP employs

node-adaptive LNC encoding to capture topological distinctions

between nodes situated in different densities, thereby guiding the

NP process and achieving significant predictive performance.

WWW ’24, May 13–17, 2024, Singapore, Singapore. Xunkai Li et al.

(b) Reddit(a) ogbn-products
Ranking of Node Degrees Ranking of Node Degrees

Figure 2: Predictive performance optimized by ATP.

(b) Flickr(a) ogbn-papers100M

Figure 3: Predictive performance with different kernels.

(b) Reddit

Reduce
Edges
1,685k

Reduce Edges 2,046k

Acc
94.6 Acc

94.4

(a) ogbn-papers100M

Reduce
Edges
253M

Reduce Edges 296M
Acc
67.3 Acc

67.0

Figure 4: Running times on large-scale graphs.

4.4 Running Efficiency in Large-scale Graphs
To answer Q3, we present a visualization illustrating the running

efficiency for ATP in Fig. 4, which encompasses both topology-

related pre-processing and model training time, the red text corre-

sponds to the reduction in the number of edges achieved by HPC,

while the blue text represents the performance influenced by Eigen.

Based on this, we draw the following conclusions: (i) HPC improves

running efficiency by directly reducing potential high-bias edges.

For instance, in SGC, HPC reduces edges by 15.3% and 14.5% on

ogbn-papers100M and Reddit. However, for GAMLP, the optimized

proportion of masked edges increases to 18.7% and 17.6%. This

is because GAMLP reduces its reliance on intricate topologies by

propagation attention. (ii) While LNC introduces additional pre-

processing overhead, when not using Eigen, HPC further optimizes

the running efficiency for computationally complex scalable GNNs

such as GAMLP. Remarkably, lightweight LNC encoding strategies

(i.e., without Eigen) still exhibit robustness and competitive results

(67.3%-67.0% and 94.6%-94.4%) as a plug-and-play approach.

(a) Feature Sparsity (b) Edge Sparsity (b) Label Sparsity

Figure 5: Sparsity performance on ogb-products.

The above observations highlight that ATP can strike a bal-

ance between model running efficiency and predictive performance

through 𝜃 -based masking mechanisms and selective LNC encoding

strategies. This observation strongly underscores the exceptional

scalability of ATP and its ability to handle web-scale graphs.

4.5 Performance under Sparse Graphs
To answer Q4, the experimental results are presented in Fig. 5.

For stimulating feature sparsity, we assume that the feature repre-

sentation of unlabeled nodes is partially missing. In this case, NP

optimization strategies that rely on node representations like NDLS

and feature-push operations like SCARA are severely compromised.

Conversely, methods based on topology like heat diffusion such

as DGC and NDM, along with LNC encoding, exhibit robustness.

To simulate edge sparsity, we randomly remove a fixed percentage

of edges. Notably, since all NP optimization strategies rely on the

topology to custom propagation rules, their performance is not

optimistic under the edge sparsity setting. However, we observe

that ATP quickly recovers and exhibits with leading performance.

For stimulating label sparsity, we change the number of labeled

samples for each class and acquire the testing results with a similar

trend as the feature-sparsity tests. Furthermore, the performance of

GAMLP★ in Fig. 5 once again demonstrates the positive coexistence

effect when seamlessly integrating our proposed ATP into other

optimization methods. Therefore, ATP comprehensively enhances

both the performance and robustness of the original backbone.

5 CONCLUSION
In this paper, we first provide a valuable empirical study that reveals

the uniqueness of intricate topology in web-scale graphs. Then,

we propose ATP, a plug-and-play NP optimization strategy that

can be seamlessly integrated into most GNNs to improve running

efficiency, reflected in performance gains and lower costs.

ATP aims to address scalability and adaptability challenges en-

countered by existing GNNs when being implemented in complex

web-scale graphs with intricate topologies. To further improve per-

formance, finer-grained HPC can be considered, such as identifying

edges (i.e., homophily or heterophily). Discovering isomorphism-

and kernel-based LNC encoding are promising directions as well.

ACKNOWLEDGMENTS
This work was partially supported by (I) the National Key Research

and Development Program of China 2020AAA0108503, (II) NSFC

Grants U2241211, 62072034, and (III) High-performance Computing

Platform of Peking University. Rong-Hua Li is the corresponding

author of this paper.

Rethinking Node-wise Propagation for Large-scale Graph Learning WWW ’24, May 13–17, 2024, Singapore, Singapore.

REFERENCES
[1] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori

Koyama. 2019. Optuna: A next-generation hyperparameter optimization frame-

work. In Proceedings of the 25th ACM SIGKDD international conference on knowl-
edge discovery & data mining, KDD. 2623–2631.

[2] Aleksandar Bojchevski, Johannes Gasteiger, Bryan Perozzi, Amol Kapoor, Martin

Blais, Benedek Rózemberczki, Michal Lukasik, and Stephan Günnemann. 2020.

Scaling Graph Neural Networks with Approximate PageRank. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD.

[3] Shaked Brody, Uri Alon, and Eran Yahav. 2022. How attentive are graph attention

networks? International Conference on Learning Representations, ICLR (2022).

[4] J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun. 2013. Spectral Networks and

Locally Connected Networks on Graphs. Computer Science (2013).
[5] Lei Cai, Jundong Li, Jie Wang, and Shuiwang Ji. 2021. Line graph neural networks

for link prediction. IEEE Transactions on Pattern Analysis and Machine Intelligence
(2021).

[6] Xuheng Cai, Chao Huang, Lianghao Xia, and Xubin Ren. 2023. LightGCL: Simple

Yet Effective Graph Contrastive Learning for Recommendation. In International
Conference on Learning Representations, ICLR.

[7] Cong Chen, Chaofan Tao, and Ngai Wong. 2021. Litegt: Efficient and lightweight

graph transformers. In Proceedings of the 30th ACM International Conference on
Information & Knowledge Management, CIKM. 161–170.

[8] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. 2020. Measuring

and relieving the over-smoothing problem for graph neural networks from the

topological view. In Proceedings of the AAAI conference on artificial intelligence,
AAAI, Vol. 34. 3438–3445.

[9] Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. 2022. Structure-aware

transformer for graph representation learning. In International Conference on
Machine Learning, ICML. PMLR, 3469–3489.

[10] Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. 2022. Structure-aware

transformer for graph representation learning. In International Conference on
Machine Learning, ICML. PMLR, 3469–3489.

[11] Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. 2023. NAGphormer: A tok-

enized graph transformer for node classification in large graphs. In International
Conference on Learning Representations, ICLR.

[12] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. Fastgcn: fast learning with graph

convolutional networks via importance sampling. In International conference on
learning representations, ICLR.

[13] Jianfei Chen, Jun Zhu, and Le Song. 2018. Stochastic training of graph convolu-

tional networks with variance reduction. In International Conference on Machine
Learning, ICML.

[14] Ming Chen, Zhewei Wei, Bolin Ding, Yaliang Li, Ye Yuan, Xiaoyong Du, and

Ji-Rong Wen. 2020. Scalable graph neural networks via bidirectional propagation.

Advances in Neural Information Processing Systems, NeurIPS 33 (2020), 14556–

14566.

[15] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. 2020.

Simple and deep graph convolutional networks. In International Conference on
Machine Learning, ICML.

[16] Qiong Chen, Ting-Ting Wu, and Ming Fang. 2013. Detecting local community

structures in complex networks based on local degree central nodes. Physica A:
Statistical Mechanics and its Applications 392, 3 (2013), 529–537.

[17] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.

2019. Cluster-gcn: An efficient algorithm for training deep and large graph

convolutional networks. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining, KDD. 257–266.

[18] Fan Chung. 2005. Laplacians and the Cheeger inequality for directed graphs.

Annals of Combinatorics 9 (2005), 1–19.
[19] Fan RK Chung. 1997. Spectral graph theory. Vol. 92. American Mathematical Soc.

[20] Aaron Clauset. 2005. Finding local community structure in networks. Physical
review E 72, 2 (2005), 026132.

[21] H Dihe. 2010. An introduction to markov process in random environment [j].

Acta Mathematica Scientia 5 (2010).
[22] Vijay Prakash Dwivedi and Xavier Bresson. 2020. A generalization of transformer

networks to graphs. arXiv preprint arXiv:2012.09699 (2020).
[23] Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and

Xavier Bresson. 2022. Graph neural networks with learnable structural and posi-

tional representations. In International Conference on Learning Representations,
ICLR.

[24] Wenzheng Feng, Yuxiao Dong, Tinglin Huang, Ziqi Yin, Xu Cheng, Evgeny

Kharlamov, and Jie Tang. 2022. Grand+: Scalable graph random neural networks.

In Proceedings of the ACM Web Conference, WWW. 3248–3258.

[25] Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. 2017. Protein interface

prediction using graph convolutional networks. Advances in neural information
processing systems, NeurIPS 30 (2017).

[26] Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael

Bronstein, and Federico Monti. 2020. Sign: Scalable inception graph neural

networks. arXiv preprint arXiv:2004.11198 (2020).

[27] Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. 2019. Diffu-

sion Improves Graph Learning. Advances in neural information processing systems,
NeurIPS (2019).

[28] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. Advances in Neural Information Processing Systems,
NeurIPS (2017).

[29] Paul W Holland and Samuel Leinhardt. 1971. Transitivity in structural models of

small groups. Comparative group studies 2, 2 (1971), 107–124.
[30] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,

Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets for

machine learning on graphs. Advances in neural information processing systems,
NeurIPS 33 (2020), 22118–22133.

[31] Youpeng Hu, Xunkai Li, Yujie Wang, Yixuan Wu, Yining Zhao, Chenggang Yan,

Jian Yin, and Yue Gao. 2021. Adaptive hypergraph auto-encoder for relational

data clustering. IEEE Transactions on Knowledge and Data Engineering (2021).

[32] Keke Huang, Jing Tang, Juncheng Liu, Renchi Yang, and Xiaokui Xiao. 2023.

Node-wise Diffusion for Scalable Graph Learning. In Proceedings of the ACMWeb
Conference, WWW. 1723–1733.

[33] Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. 2018. Adaptive sam-

pling towards fast graph representation learning. Advances in Neural Information
Processing Systems, NeurIPS 31 (2018).

[34] Zengfeng Huang, Shengzhong Zhang, Chong Xi, Tang Liu, and Min Zhou. 2021.

Scaling up graph neural networks via graph coarsening. In Proceedings of the 27th
ACM SIGKDD conference on knowledge discovery & data mining, KDD. 675–684.

[35] Bowen Jin, Chen Gao, Xiangnan He, Depeng Jin, and Yong Li. 2020. Multi-

behavior recommendation with graph convolutional networks. In Proceedings
of the 43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR. 659–668.

[36] Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang.

2020. Graph structure learning for robust graph neural networks. In Proceedings
of the 26th ACM SIGKDD international conference on knowledge discovery & data
mining, KDD. 66–74.

[37] Peter Kabal and Ravi Prakash Ramachandran. 1986. The computation of line spec-

tral frequencies using Chebyshev polynomials. IEEE Transactions on Acoustics,
Speech, and Signal Processing 34, 6 (1986), 1419–1426.

[38] Thomas N Kipf and MaxWelling. 2017. Semi-supervised classification with graph

convolutional networks. In International Conference on Learning Representations,
ICLR.

[39] J. Klicpera, A. Bojchevski, and S Günnemann. 2019. Predict then Propagate:

Graph Neural Networks meet Personalized PageRank. In International Conference
on Learning Representations, ICLR.

[40] Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Pru-

dencio Tossou. 2021. Rethinking graph transformers with spectral attention.

Advances in Neural Information Processing Systems, NeurIPS 34 (2021), 21618–

21629.

[41] Xunkai Li, Jingyuan Ma, Zhengyu Wu, Daohan Su, Wentao Zhang, Rong-Hua Li,

and Guoren Wang. 2024. ATP Appendix. In https://github.com/xkLi-Allen/ATP.
[42] Ningyi Liao, Dingheng Mo, Siqiang Luo, Xiang Li, and Pengcheng Yin. 2022.

SCARA: Scalable Graph Neural Networks with Feature-Oriented Optimization.

In International Conference on Very Large Databases, VLDB. 3240–3248.
[43] Xiaojun Ma, Qin Chen, Yi Wu, Guojie Song, Liang Wang, and Bo Zheng. 2023.

Rethinking Structural Encodings: Adaptive Graph Transformer for Node Classifi-

cation Task. In Proceedings of the ACM Web Conference, WWW. 533–544.

[44] Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. 2021. Is homophily a necessity

for graph neural networks? International Conference on Learning Representations,
ICLR (2021).

[45] Sunil Kumar Maurya, Xin Liu, and Tsuyoshi Murata. 2021. Improving graph

neural networks with simple architecture design. arXiv preprint arXiv:2105.07634
(2021).

[46] Beresford N Parlett and David S Scott. 1979. The Lanczos algorithm with selective

orthogonalization. Mathematics of computation 33, 145 (1979), 217–238.

[47] Aravind Sankar, Yozen Liu, Jun Yu, and Neil Shah. 2021. Graph neural networks

for friend ranking in large-scale social platforms. In Proceedings of the Web
Conference, WWW. 2535–2546.

[48] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan

Günnemann. 2018. Pitfalls of graph neural network evaluation. arXiv preprint
arXiv:1811.05868 (2018).

[49] Horst D Simon. 1984. The Lanczos algorithm with partial reorthogonalization.

Mathematics of computation 42, 165 (1984), 115–142.

[50] Zixing Song, Xiangli Yang, Zenglin Xu, and Irwin King. 2022. Graph-based

semi-supervised learning: A comprehensive review. IEEE Transactions on Neural
Networks and Learning Systems (2022).

[51] Gilbert W Stewart. 1999. The QLP approximation to the singular value decompo-

sition. SIAM Journal on Scientific Computing 20, 4 (1999), 1336–1348.

[52] Qiaoyu Tan, Xin Zhang, Ninghao Liu, Daochen Zha, Li Li, Rui Chen, Soo-Hyun

Choi, and Xia Hu. 2023. Bring your own view: Graph neural networks for link

prediction with personalized subgraph selection. In Proceedings of the Sixteenth
ACM International Conference on Web Search and Data Mining, WSDM. 625–633.

WWW ’24, May 13–17, 2024, Singapore, Singapore. Xunkai Li et al.

[53] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2018. Graph attention networks. In International Confer-
ence on Learning Representations, ICLR.

[54] Cédric Vincent-Cuaz, Rémi Flamary, Marco Corneli, Titouan Vayer, and Nicolas

Courty. 2022. Template based graph neural network with optimal transport

distances. Advances in neural information processing systems, NeurIPS (2022).
[55] Hanzhi Wang, Mingguo He, Zhewei Wei, Sibo Wang, Ye Yuan, Xiaoyong Du,

and Ji-Rong Wen. 2021. Approximate graph propagation. In Proceedings of the
27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, KDD.
1686–1696.

[56] Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong,

and Anshul Kanakia. 2020. Microsoft academic graph: When experts are not

enough. Quantitative Science Studies 1, 1 (2020), 396–413.
[57] Yifei Wang, Yisen Wang, Jiansheng Yang, and Zhouchen Lin. 2021. Dissecting

the diffusion process in linear graph convolutional networks. Advances in Neural
Information Processing Systems, NeurIPS 34 (2021), 5758–5769.

[58] Duncan J Watts and Steven H Strogatz. 1998. Collective dynamics of ‘small-

world’networks. nature 393, 6684 (1998), 440–442.
[59] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian

Weinberger. 2019. Simplifying graph convolutional networks. In International
Conference on Machine Learning, ICML.

[60] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
Transactions on Neural Networks and Learning Systems 32, 1 (2020), 4–24.

[61] Lianghao Xia, Chao Huang, Jiao Shi, and Yong Xu. 2023. Graph-less Collaborative

Filtering. In Proceedings of the ACM Web Conference, WWW. 17–27.

[62] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi

Kawarabayashi, and Stefanie Jegelka. 2018. Representation learning on graphs

with jumping knowledge networks. In International Conference on Machine Learn-
ing, ICML. PMLR, 5453–5462.

[63] Liangwei Yang, Shengjie Wang, Yunzhe Tao, Jiankai Sun, Xiaolong Liu, Philip S

Yu, and TaiqingWang. 2023. DGRec: Graph Neural Network for Recommendation

with Diversified Embedding Generation. In Proceedings of the Sixteenth ACM
International Conference on Web Search and Data Mining, WSDM. 661–669.

[64] Mingqi Yang, Yanming Shen, Rui Li, Heng Qi, Qiang Zhang, and Baocai Yin.

2022. A new perspective on the effects of spectrum in graph neural networks. In

International Conference on Machine Learning, ICML. PMLR, 25261–25279.

[65] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. 2016. Revisiting

Semi-Supervised Learning with Graph Embeddings. In International Conference
on Machine Learning, ICML. 40–48.

[66] Liang Yao, Chengsheng Mao, and Yuan Luo. 2019. Graph convolutional net-

works for text classification. In Proceedings of the AAAI conference on artificial
intelligence, AAAI, Vol. 33. 7370–7377.

[67] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He,

Yanming Shen, and Tie-Yan Liu. 2021. Do Transformers Really Perform Badly

for Graph Representation?. In Advances in Neural Information Processing Systems,
NeurIPS.

[68] Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, AndreyMalevich,

Rajgopal Kannan, Viktor Prasanna, Long Jin, and Ren Chen. 2021. Decoupling

the depth and scope of graph neural networks. Advances in Neural Information
Processing Systems, NeurIPS 34 (2021), 19665–19679.

[69] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor

Prasanna. 2020. Graphsaint: Graph sampling based inductive learning method.

In International Conference on Learning Representations, ICLR.
[70] Muhan Zhang and Yixin Chen. 2018. Link prediction based on graph neural

networks. Advances in neural information processing systems, NeurIPS (2018).
[71] Wentao Zhang, Yu Shen, Zheyu Lin, Yang Li, Xiaosen Li, Wen Ouyang, Yangyu

Tao, Zhi Yang, and Bin Cui. 2022. PaSca: A Graph Neural Architecture Search

System under the Scalable Paradigm. In Proceedings of the ACM Web Conference,
WWW. 1817–1828.

[72] Wentao Zhang, Mingyu Yang, Zeang Sheng, Yang Li, Wen Ouyang, Yangyu Tao,

Zhi Yang, and Bin Cui. 2021. Node dependent local smoothing for scalable graph

learning. Advances in Neural Information Processing Systems, NeurIPS 34 (2021),
20321–20332.

[73] Wentao Zhang, Ziqi Yin, Zeang Sheng, Yang Li, Wen Ouyang, Xiaosen Li, Yangyu

Tao, Zhi Yang, and Bin Cui. 2022. Graph Attention Multi-Layer Perceptron.

Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, KDD (2022).

[74] Yanfu Zhang, Hongchang Gao, Jian Pei, and Heng Huang. 2022. Robust Self-

Supervised Structural Graph Neural Network for Social Network Prediction. In

Proceedings of the ACM Web Conference 2022. 1352–1361.
[75] Yanfu Zhang, Shangqian Gao, Jian Pei, and Heng Huang. 2022. Improving social

network embedding via new second-order continuous graph neural networks. In

Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data
mining, KDD. 2515–2523.

[76] Zhen Zhang, Jiajun Bu, Martin Ester, Jianfeng Zhang, Chengwei Yao, Zhi Yu,

and Can Wang. 2019. Hierarchical graph pooling with structure learning. arXiv
preprint arXiv:1911.05954 (2019).

[77] Jianan Zhao, Chaozhuo Li, Qianlong Wen, Yiqi Wang, Yuming Liu, Hao Sun,

Xing Xie, and Yanfang Ye. 2021. Gophormer: Ego-graph transformer for node

classification. arXiv preprint arXiv:2110.13094 (2021).
[78] Hao Zhu and Piotr Koniusz. 2021. Simple spectral graph convolution. In Interna-

tional conference on learning representations, ICLR.
[79] Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu.

2019. Layer-dependent importance sampling for training deep and large graph

convolutional networks. Advances in Neural Information Processing Systems,
NeurIPS 32 (2019).

Rethinking Node-wise Propagation for Large-scale Graph Learning WWW ’24, May 13–17, 2024, Singapore, Singapore.

A OUTLINE
A.1 Dataset Description

A.2 Compared Baselines

A.3 Experiment Environment

A.4 Weighted Aggregation and LNC Encoding

A.5 Graph Transformers and GCNII-based ATP

A.6 Masks in High-bias Propagation Correction

A.7 Experiments for Comprehensive Evaluation

A.1 Dataset Description
The description of all datasets is listed below:

Cora, CiteSeer, and PubMed [65] are three citation network

datasets, where nodes represent papers and edges represent cita-

tion relationships. The node features are word vectors, where each

element indicates the presence or absence of each word in the paper.

Coauthor CS and Coauthor Physics [48] are co-authorship
graphs based on the Microsoft Academic Graph [56], where nodes

are authors, edges are co-author relationships, node features repre-

sent paper keywords, and labels indicate the research field.

Amazon Photo and Amazon Computers [48] are segments

of the Amazon co-purchase graph, where nodes represent items

and edges represent that two goods are frequently bought together.

Given product reviews as bag-of-words node features.

ogbn-arxiv and ogbn-papers100M [30] are two citation graphs

indexed by MAG [56]. Each paper involves averaging the embed-

dings of words in its title and abstract. The embeddings of individual

words are computed by running the skip-gram model.

ogbn-products [30] is a co-purchasing network, where nodes
represent products and edges represent that two products are fre-

quently bought together. Node features are generated by extracting

bag-of-words features from the product descriptions.

Flickr [69] dataset originates from the SNAP, where nodes repre-

sent images, and connected images from common properties. Node

features are 500-dimensional bag-of-words representations.

Reddit [28] dataset collected from Reddit, where 50 large com-

munities have been sampled to build a post-to-post graph, con-

necting posts if the same user comments on both. For features,

off-the-shelf 300-dimensional GloVe vectors are used.

A.2 Compared Baselines
The backbone GNNs used in experiments are listed below:

GCN [38] introduces a novel approach to graphs that is based

on a first-order approximation of spectral convolutions on graphs.

This approach learns hidden layer representations that encode both

local graph structure and features of nodes.

GAT [53] utilizes attention mechanisms to quantify the impor-

tance of neighbors for message aggregation. This strategy enables

implicitly specifying different weights to different nodes in a neigh-

borhood, without depending on the graph structure upfront.

GCNII [15] incorporates initial residual and identity mapping.

Theoretical and empirical evidence is presented to demonstrate

how these techniques alleviate the over-smoothing problem.

GATv2 [3] introduces a variant with dynamic graph attention

mechanisms to improve GAT. This strategy provides better node

representation capabilities and enhanced robustness when dealing

with graph structure as well as node attribute noise.

GraphSAGE [28] leverages neighbor node attribute information

to efficiently generate representations. This method introduces a

general inductive framework that leverages node feature informa-

tion to generate node embeddings for previously unseen data.

Cluster-GCN [17] is designed for training with stochastic gra-

dient descent (SGD) by leveraging the graph clustering structure.

At each step, it samples a block of nodes that associate with a dense

subgraph identified by a graph clustering algorithm, and restricts

the neighborhood search within this subgraph.

GraphSAINT [69] is a inductive framework that enhances train-

ing efficiency through graph sampling. Each iteration, a complete

GCN is built from the properly sampled subgraph, which decouples

the sampling from the forward and backward propagation.

ShaDow [68] decouples the depth and scope of GNNs for infor-

mative representations in node classfication. This approach propose

a design principle to decouple the depth and scope of GNNs – to

generate representation of a target entity, where a properly ex-

tracted subgraph consists of a small number of critical neighbors,

while excluding irrelevant ones.

SGC [59] simplifies GCN by removing non-linearities and col-

lapsing weight matrices between consecutive layers. Theoretical

analysis show that the simplified model corresponds to a fixed

low-pass filter followed by a linear classifier.

APPNP [39] leverages the connection between GCN and PageR-

ank to develop an enhanced propagation method. This strategy

leverages a large, adjustable neighborhood for classification and

can be easily combined with any neural network.

PPRGo [2] proposes an efficient approximation of diffusion in

GNNs for substantial speed improvements and better performance.

This approach utilizes an efficient approximation of information

diffusion in GNNs resulting in significant speed gains while main-

taining competitive performance.

SIGN [26] introduces a novel, efficient, and scalable graph deep

learning architecture that eliminates the need for graph sampling.

This method sidesteps the need for graph sampling by using graph

convolutional filters of different size that are amenable to efficient

pre-computation, allowing extremely fast training and inference.

S2GC [78] introduces a modified Markov Diffusion Kernel for

GCN, which strikes a balance between low- and high-pass filters to

capture the global and local contexts of each node.

GBP [14] introduces a scalable GNN that employs a localized

bidirectional propagation process involving both feature vectors

and the nodes involved in training and testing. Theoretical analysis

shows that GBP is the first method that achieves sub-linear time

complexity for both the pre-computation and the training phases.

AGP [55] proposes a unified randomized algorithm capable of

computing various proximity queries and facilitating propagation.

This method provides a theoretical bounded error guarantee and

runs in almost optimal time complexity.

GAMLP [73] is designed to capture the inherent correlations

between different scales of graph knowledge to break the limitations

of the enormous size and high sparsity level of graphs hinder their

applications under industrial scenarios.

GRAND+ [24] develops the generalized forward push algorithm

called GFPush, which is utilized for graph augmentation in a mini-

batch fashion. Both the low time and space complexities of GFPush

enable GRAND+ to efficiently scale to large graphs.

WWW ’24, May 13–17, 2024, Singapore, Singapore. Xunkai Li et al.

Table 5: The statistical information of the experimental datasets.

Dataset #Nodes #Features #Edges #Classes #Train/Val/Test #Task Description

Cora 2,708 1,433 5,429 7 140/500/1000 Transductive citation network

CiteSeer 3,327 3,703 4,732 6 120/500/1000 Transductive citation network

PubMed 19,717 500 44,338 3 60/500/1000 Transductive citation network

Amazon Photo 7,487 745 119,043 8 160/240/7,087 Transductive co-purchase graph

Amazon Computer 13,381 767 245,778 10 200/300/12,881 Transductive co-purchase graph

Coauthor CS 18,333 6,805 81,894 15 300/450/17,583 Transductive co-authorship graph

Coauthor Physics 34,493 8,415 247,962 5 100/150/34,243 Transductive co-authorship graph

ogbn-arxiv 169,343 128 2,315,598 40 91k/30k/48k Transductive citation network

ogbn-products 2,449,029 100 61,859,140 47 196k/49k/2204k Transductive co-purchase graph

ogbn-papers100M 111,059,956 128 1,615,685,872 172 1200k/200k/146k Transductive citation network

Flickr 89,250 500 899,756 7 44k/22k/22k Inductive image network

Reddit 232,965 602 11,606,919 41 155k/23k/54k Inductive social network

(a) GraphSAGE (b) GAT

(c) GATv2 (d) ATP
Figure 6: Comparison of the attention- and LNC encoding-
based message aggregation weights (similar to propagation
kernel coefficients) on ogbn-arxiv. The x-axis represents the
ranking of node degrees from low to high order.

A.3 Experiment Environment
Experiments are conducted with Intel(R) Xeon(R) CPU E5-2686 v4

@ 2.30GHz, and a single NVIDIA GeForce RTX 3090 with 24GB

GPU memory. The operating system of the machine is Ubuntu

20.04.5 with 768GB of memory. As for software versions, we use

Python 3.8.10, Pytorch 1.13.0, and CUDA 11.7.0.

A.4 Weighted Aggregation and LNC Encoding
In Sec. 4.2, we provide a brief discussion of potential scalability con-

cerns associated with the attention mechanisms in web-scale graph

learning scenarios. We also highlight the incompatibility of these

end-to-end learnable message aggregation mechanisms with the

LNC encoding introduced in ATP for optimizing propagation kernel

coefficients 𝑟 . To delve deeper into these statements and present a

comprehensive evaluation of weighted message aggregation and

LNC encoding within ATP, this section begins by clarifying the

distinctions and connections between learnable attention mecha-

nisms and graph propagation equations. Then, we present visual

experimental results for both ATP and end-to-end attention-based

approaches, including GraphSAGE, GAT, and GATv2.

Graph Attention Mechanisms. To improve the predictive per-

formance of the current node 𝑖 , GraphSAGE proposes to explicitly

consider its first-order neighbors, denoted as 𝑗 ∈ N𝑖 . Specifically,
during the message aggregation, GraphSAGE treats all neighbors

with equal importance (indiscriminated aggregation), with a key

aspect being the combination of aggregated messages using an

end-to-end learnable mechanism. This can be formalized as follows

X𝑢 = Aggregate (W,X𝑢 , {X𝑣,∀𝑣 ∈ N (𝑢)}) . (12)

To achieve fine-grained message aggregation for each node, GAT

employs a 𝑑-dimension embedding-based learnable scoring func-

tion with trainable a, W, denoted as 𝑒 : R𝑑𝑞 × R𝑑𝑣 → R, to obtain

the attention score 𝛼 of each "key" neighbor in generating repre-

sentations for the current "query" node (i.e., attention mechanism).

𝑒
(
X𝑖 ,X𝑗

)
= LeakyReLU

(
a⊤ ·

[
WX𝑖 ∥WX𝑗

])
,

𝛼𝑖 𝑗 = softmax

(
𝑒
(
X𝑖 ,X𝑗

))
=

exp

(
𝑒
(
X𝑖 ,X𝑗

))∑
𝑗∈N𝑖 exp

(
𝑒
(
X𝑖 ,X𝑗 ′

)) . (13)

Then, GAT takes into account neighbor messages with varying

scores when generating representations for the current node.

X𝑢 = 𝜎
©«
∑︁
𝑗∈N𝑖

𝛼𝑖 𝑗 ·WX𝑗
ª®¬ . (14)

Due to the globally shared learnable parameters in the 𝑒 , different

"query" node embeddingsX𝑢 ∈ R𝑑𝑞 will yield the same score ranking

list in extreme scenarios (e.g., complete bipartite graphs). In other

words, GAT may disproportionately focus on a fixed "key" neigh-

bor (i.e., static attention), which contradicts the original intention

of flexible attention composition. Building upon this observation,

GATv2 modifies the order of importance scores computation to

achieve a more expressive graph attention mechanism.

𝑒
(
X𝑖 ,X𝑗

)
= a⊤ LeakyReLU

(
W ·

[
X𝑖 ∥X𝑗

])
. (15)

Rethinking Node-wise Propagation for Large-scale Graph Learning WWW ’24, May 13–17, 2024, Singapore, Singapore.

Table 6: Model performance with NP optimization strategies.

Models Computer Physics ogbn-arxiv Flickr

GCNII 82.64±0.5 92.78±1.2 72.68±0.3 53.11±0.1

GCNII+ATP 83.75±0.4 94.32±1.0 75.37±0.2 53.96±0.1

GNN-LSPE 83.34±0.5 93.90±1.4 72.96±0.3 52.24±0.1

Graphormer 82.95±0.6 93.54±1.3 72.35±0.3 51.86±0.2

Gophormer 83.10±0.5 93.67±1.1 72.60±0.2 52.28±0.1

NAGphormer 83.76±0.5 93.85±1.2 73.75±0.3 53.40±0.2

LiteGT 82.84±0.6 93.12±1.5 73.13±0.3 52.33±0.1

SAT 83.55±0.5 94.12±1.2 73.84±0.3 52.57±0.1

AGT 83.84±0.6 93.88±1.1 73.98±0.3 53.24±0.2

Reviewing graph attention, we find that their optimization can

also be derived from a node-wise perspective. For instance, GAT

aims to identify neighbors during aggregation, while GATv2 adopts

fine-grained attention score modeling. Fundamentally, graph at-

tention represents a specific instance within the broader context

of graph propagation equations, customizing message aggregation

strategies for each node in an end-to-end learnable manner (i.e.,

node-pair based𝑤 in Eq. (3)). Intuitively, graph attention is effec-

tive, but the intricate topology in web-scale graphs brings unique

challenges. According to Table 1, it is evident that current attention

mechanisms struggle to maintain effectiveness and consistency, let

alone provide the scalability required for large-scale graph learning.

To illustrate this issue, we provide the following visual analysis.

Visual Analysis.We report the visual results in Fig. 6, where

the x-axis indicates the node set with degrees within the Top 10%

of the ranking from low to high order and the heat map value

represents the percentage of nodes in the set that have achieved the

correspondent message weights. For ATP, the y-axis is the node-

adaptive 𝑟 . For others, we first train each model and then obtain the

average attention score 𝛼 for each node in first-order aggregation.

Building upon this, we draw the following conclusions: (1) The

performance of ATP aligns with the key intuition derived from our

empirical study in Sec.1. Specifically, nodes with smaller degrees

tend to have smaller 𝑟 , leading to a more inclusive knowledge ac-

quisition from their neighbors, while nodes with larger degrees

have larger 𝑟 to enable fine-grained discrimination of neighbors.

(2) Progressing from GraphSAGE to GATv2, we observe that their

optimization objectives align with the pre-process in ATP. However,

as previously emphasized, when faced with intricate topologies in

web-scale graphs, existing methods cannot fully capture potential

structural patterns through learnable mechanisms. The lack of dis-

tinct color differentiations leads to their sub-optimal performance.

A.5 Graph Transformers and GCNII-based ATP
We commence by revisiting graph transformer and graph attention

from the perspective of the attentionmechanism. Then, we elucidate

the distinctions between ATP and graph transformer. With experi-

mental analysis, we discuss if ATP is preferred to perform graph

propagation on web-scale graphs comparing graph transformer.

Graph Transformer Mechanisms. From a self-attention per-

spective, the graph attention mechanism calculates only the first-

order neighbors of the current node, while the graph transformer

considers all nodes within the graph. From a message aggregation

perspective, graph transformer correspond to fully connected dense

graphs, while graph attention corresponds to a relatively sparse

graph. In terms of structural encoding, graph transformers provide

the model with high-dimensional global structural positional priors,

whereas graph attention focuses more on the local neighbors.

Specifically, transformers consist of multiple transformer layers,

with each comprising a self-attention module and a feed-forward

network (FFN). Considering the 𝑙-th transformer layer, the input fea-

tures H(𝑙−1) ∈ R𝑁×𝑑 (where H(0) = X(0)) are initially transformed

using three weight matrices W𝑄 ∈ R𝑑×𝑑𝑄 ,W𝐾 ∈ R𝑑×𝑑𝐾 ,W𝑉 ∈
R𝑑×𝑑𝑉 to generate the corresponding query, key, and valuematrices

𝑄,𝐾,𝑉 ∈ R𝑁×𝑑 . For simplicity, we assume that 𝑑 = 𝑑𝐾 = 𝑑𝑄 = 𝑑𝑉 .
The formulation of the transformer layer is then as follows:

Q = H(𝑙−1)W𝑄 ,K = H(𝑙−1)W𝐾 ,V = H(𝑙−1)W𝑉

B(𝑙) =
QK⊤
√
𝑑
, H(𝑙) = FFN

(
softmax

(
B(𝑙)

)
V
)
.

(16)

Graph transformers have significantly advanced the field of graph

learning by addressing fundamental limitations inherent in GNNs,

such as over-smoothing. Building upon this, graph transformers

empower nodes to incorporate information from any other nodes

in the graph, thereby overcoming the constraints of the limited

receptive field. In other words, the fundamental concept behind

graph transformers is to incorporate structural information into the

transformer architecture in a learnable manner, facilitating node

predictions.

Related Works. To compare the performance improvement

brought by ATP to GCNII with models based on the graph trans-

former architecture, we summarize the key characteristics of repre-

sentative graph transformers proposed in recent years as follows

LSPE [23] proposes a generic architecture to decouple node at-

tributes and topology in a learnable manner for better performance.

This method proposes to decouple structural and positional repre-

sentations to learn these two essential properties.

Graphormer [67] utilizes node degree and neighborhood-based

spatial centrality to combine additional topological structure infor-

mation in the learnable message aggregation process.

Gophormer [77] utilizes well-designed sampled ego-graphs, in-

troduces a proximity-enhanced transformer mechanism to capture

structural biases for better aggregation. Meanwhile, this strategy

considers the stability in training and testing.

LiteGT [7] introduces an efficient graph transformer architecture

that incorporates sampling strategies and a multi-channel trans-

former mechanism with kernels for better performance.

SAT [10] employs various graph learning models to extract cor-

related structural information within the current node’s neighbor-

hood, including utilize graph Laplacian eigenvectors-based encod-

ing mechanism to improve transformer architectures.

AGT [43] consists of a learnable centrality encoding strategy and

a kernelized local structure encoding mechanism to extract struc-

tural patterns from the centrality and subgraph views to improve

node representations for the node-level downstream tasks.

NAGphormer [11] treats each node as a sequence containing a

series of tokens. For each node, NAGphormer aggregates the neigh-

borhood features from different hops into different representations.

WWW ’24, May 13–17, 2024, Singapore, Singapore. Xunkai Li et al.

(b) Reddit(a) ogbn-products
Ranking of Node Degrees

Figure 7: Performance under the influence of masking ratio.

(b) Reddit(a) ogbn-products
Figure 8: Performance under the influence of sampling ratio.

Experimental Analysis.we present the predictive performance

of graph transformers and GCNII-based ATP, in Table 6. Notably,

we opt for GCNII over GCN to ensure a fair comparison, as the

simple computations in GCN appear obsolete compared with well-

designed transformer mechanisms. Based on the results, we observe

that graph transformers exhibit a significant advantage on small-

scale datasets such as Computer and Physics. This is attributed to

their ability to effectively capture the simple and direct topological

structures. Conversely, graph transformers struggle to perform well

as the dataset size grows due to the increasingly intricate topology,

as evidenced by their performance on ogbn-arxiv and Flickr.

Graph Attention/Transformer vs ATP. Fundamentally, both

graph attention and graph transformer share the core idea of achiev-

ing better message aggregation through end-to-end learnable mech-

anisms. However, graph attention pays more attention to local

neighbors, whereas graph transformers aim to encode global topol-

ogy. Although GATv2 and NAGphormer enhance the expressive-

ness of score function in graph attention and improve local rep-

resentations in graph transformers, they both exhibit significant

disadvantages as follows : (1) The representation capacity of end-

to-end learnable mechanisms is contentious, especially in facing

the intricate topology of web-scale graphs. In other words, the

debate about whether they can successfully capture the LNC of

each node remains uncertain. Our experiments on web-scale graphs

have yielded unsatisfying results. (2) Complex model architectures

with vast learnable parameters lead to scalability issue. Although

NAGphormer can be trained on ogbn-papers100M with the use of

sampling and mini-batch training strategies, it remains challeng-

ing to deploy and is prone to instability. It is highly sensitive to

sampling results and training hyperparameters such as token size.

To address these issues, we introduce LNC, which offers a com-

prehensive node characterization based on features, positions in

the graph, and local topological structure. As shown in our empiri-

cal study in Sec. 1, LNC reveals key insights for achieving robust

node classification performance on web-scale graphs with intricate

topology. Building upon this, we propose ATP to improve graph

propagation equations Eq. (3), which seamlessly combines node fea-
tures, positions (from a global perspective, centrality-based position

encoding similar to graph transformer), and local topological struc-
ture (from a local perspective, connectivity-based local topological

structure encoding similar to graph attention). Meanwhile, as a

weight-free and plug-and-play strategy, ATP improves the running

efficiency of the most of existing GNNs.

A.6 Masks in High-bias Propagation Correction
HPC first samples a subset of nodes

˜V ⊂ V . The design principles

for the sampling mechanism are as follows: (1) selecting all nodes

that rank in the Top-𝜃% based on their degree when nodes are sorted

from highest to lowest degree. This is to strike a balance between

the optimal convergence radius and over-smoothing from a global

graph propagation perspective. (2) Selecting partial nodes outside

the above node degree rankings. Specifically, for other relatively

sparse nodes, we perform random sampling with a fixed sampling

ratio of 0.2. Similar to dropout in training process, this strategy

aims to enhance the robustness of node representations from a reg-

ularization perspective while further reducing the pre-computation

and training costs associated with topology. Subsequently, HPC

applies edge masking to the node set
˜V by the mask token [𝑀]. It

is worth noting that we have provided experimental analysis into

how different values of 𝜃 impact the performance improvement

brought by High-Deg selection in Fig.2. Therefore, in this section,

we supplement the discussion of the effect of the edge masking

ratio [𝑀] performed by HPC on predictive performance.

According to the experimental results presented in Fig. 7, in the

transductive setting, increasing the masking ratio from zero has an

overall positive impact on predictive performance. However, when

the masking ratio becomes excessively high, the performance dete-

riorates when handling edge sparsity. Furthermore, in the inductive

setting, we find that lower masking ratios may have a negative

effect, in stark contrast to the results in the transductive setting.

The observed variation arises from the inductive setting’s demand

for richer neighborhood knowledge in predicting unseen nodes.

Nevertheless, as we increase the masking ratio, the benefits of elim-

inating potential high-bias propagation outweigh the drawbacks

of reduced neighborhood knowledge. In conclusion, based on the

empirical analysis of the experimental results mentioned above,

we recommend setting the masking ratio to 0.5, as it tends to yield

optimal predictive performance in most cases.

Similar to the conclusions drawn from Fig.2 and Fig.7, the ex-

perimental results in Fig. 8 indicate that randomly sampling too

many relatively sparsely connected nodes for HPC can adversely

affect node prediction performance due to significant topological

information gap. Conversely, selecting an appropriate sampling

ratio can strike a balance between mitigating potential high-bias

propagation and topological gap, thereby contributing to significant

performance improvements in the original backbone.

Rethinking Node-wise Propagation for Large-scale Graph Learning WWW ’24, May 13–17, 2024, Singapore, Singapore.

Table 7: FSGNN performance gain with ATP.

Models arxiv products 100M Flickr Reddit

FSGNN 73.5±0.3 80.8±0.2 66.2±0.2 53.4±0.2 94.1±0.1

FSGNN+ATP 75.3±0.3 84.5±0.2 69.9±0.2 55.1±0.1 95.9±0.1

Table 8: HPC performance with different strategies.

Models arxiv products papers100M

SGC 71.84±0.26 75.92±0.07 64.38±0.15

SGC+Sampling 71.59±0.34 76.14±0.15 64.24±0.27

SGC+ATP 72.25±0.20 76.80±0.08 64.56±0.19

APPNP 72.34±0.24 78.84±0.09 65.26±0.18

APPNP+Sampling 72.25±0.40 78.60±0.24 65.14±0.26

APPNP+ATP 72.76±0.17 79.46±0.11 65.48±0.20

GRAND+ 73.86±0.28 79.55±0.20 66.86±0.17

GRAND++Sampling 73.58±0.46 79.47±0.36 66.70±0.28

GRAND++ATP 74.10±0.22 80.07±0.14 67.12±0.16

Table 9: Efficiency results for sampling-based methods.

Models products Reddit

GraphSAGE 2736s 70.2s

Cluster-GCN 2183s 62.7s

GraphSAINT 1892s 51.5s

ShaDow 1624s 46.8s

GAMLP+ATP 1974s 49.3s

GAMLP+ATP/Eigen 1480s 41.6s

Table 10: Performance with different LNC strategies.

Model arxiv products

GAMLP 73.43±0.32 81.41±0.22

+ ATP/E 75.69±0.30 84.85±0.28

+ ATP/E w PageRank 75.64±0.39 84.96±0.25

+ ATP/E w Katz 75.78±0.36 84.90±0.34

+ ATP/E w both 75.84±0.29 85.12±0.26

A.7 Experiments for Comprehensive Evaluation
It is worth noting that, in addition to the baseline backbone models

compared in Sec. 4.2, FSGNN [45] stands out as a recently proposed

scalable GNN model based on a decoupling strategy. Leveraging

Soft-Selector and Hop-Normalization, FSGNN constructs robust

neural predictors from the perspective of node features, exhibiting

significant advantages in node-level prediction tasks. To further

explore whether ATP can enhance the performance of FSGNN,

we present its experimental results on transductive and inductive

datasets in Table 7. Based on these findings, we consistently ob-

serve that ATP enhances the performance of FSGNN across these 5

different datasets. This improvement stems from the fine-grained

propagation results achieved by ATP, which effectively decouple

feature generation and representation learning within FSGNN.

In our proposed ATP, the HPC module adopts a targeted regu-

larization approach focusing on High-Deg. Although GraphSAGE

employs random neighborhood sampling akin to our approach, the

key disparity lies in ATP’s regularization objective centered on

High-Deg, while GraphSAGE uniformly conducts dropout. To eluci-

date these distinctions and provide a comprehensive evaluation, we

present experimental results in Table 8. In contrast to GraphSAGE’s

uniform neighborhood sampling strategy at each layer, which dis-

regards node degree discrepancies and applies identical sampling

proportions to all nodes, ATP incorporates tailored propagation

rules based on node connectivity. As demonstrated in our theo-

retical analysis in Sec. 3.1, customized propagation rules should

prioritize High-Deg. However, GraphSAGE’s uniform approach

leads to inconsistent performance across experiments, falling short

of our proposed method. Furthermore, GraphSAGE exhibits higher

variance due to its inability to consistently produce high-quality

sampling outcomes across random runs. Conversely, ATP leverages

insights from our theoretical analysis to adapt propagation rules

for High-Deg, resulting in enhanced consistency and predictions.

As discussed in Sec. 3.2, the eigenvector-based position encoding

is designed to exploit the spectral domain perspective, offering a

more precise description of the node’s LNC. However, it entails

spectral decomposition, which may incur computational overheads.

While approximate estimation methods can partially alleviate these

costs, they still represent a non-negligible computational overhead.

Therefore, we proceed to introduce feasible alternative solutions

in the subsequent sections. It is noteworthy that we present an

intuitive efficiency analysis in Table 9 to further substantiate our

viewpoint. Alternatively, for minimizing computational overheads

while optimizing NP, we suggest exploring alternative designs that

enhance spatial domain encoding of local context. Utilizing PageR-

ank or Katz centrality based on degree-based position encoding

presents viable alternatives to eigenvector-based position encod-

ing. These methods offer lower computational costs compared to

eigenvector centrality. However, they share fundamental similar-

ities with degree-based position encoding, thereby limiting the

improvements they can provide over using ATP alone. Detailed

experimental results are shown in Table 10.

	Abstract
	1 Introduction
	2 PRELIMINARIES
	2.1 Problem Formulation
	2.2 Scalable Graph Neural Networks

	3 ATP FRAMEWORK
	3.1 High-bias Propagation Correction
	3.2 Weight-free LNC Encoding

	4 Experiments
	4.1 Experimental Setup
	4.2 Performance Comparison
	4.3 Ablation Study and In-depth Analysis
	4.4 Running Efficiency in Large-scale Graphs
	4.5 Performance under Sparse Graphs

	5 Conclusion
	Acknowledgments
	References
	A Outline
	A.1 Dataset Description
	A.2 Compared Baselines
	A.3 Experiment Environment
	A.4 Weighted Aggregation and LNC Encoding
	A.5 Graph Transformers and GCNII-based ATP
	A.6 Masks in High-bias Propagation Correction
	A.7 Experiments for Comprehensive Evaluation

